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ABSTRACT

We analyze the convergence of the spectral vanishing method for both the

NN 2

spectral and pseudospectral discretizations of the inviscid Burgers” equa-
tion. We prove that this kind of vanishing viscosity is responsible for a
b spectral decay of those Fourier coefficients located toward the end of the
computed spectrum; consequently, the discretization error is shown to be spec-
trally small 1independent of whether the underlying solution 1is smooth or
not. This in turn implies that the numerical solution remains uniformly

bounded and convergence follows by compensated compactness arguments.
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INTRODUCTION

In this paper, we extend the analysis of the spectral vanishing viscosity
method for stabilizing spectral approximations of nonlinear conservation
laws. The spectral vanishing viscosity has been first introduced in (3],
where it was shown that L —bounded spectral-Galerkin approximations converge

strongly in Lioc(x,t) to the exact entropy solutions of such conservation

laws.
The analysis is performed on the 2n-periodic inviscid Burgers” equation
2
u (x,t)) -0 ;
2 *

(1.1) %f u(x,t) + %; (

submitted to the additional entropy condition

2 3 )
3 ,u(x,t) 3 ,u(x,t)

2 —_ (2 —_ (2
(104—) at ( 2 ) + BX ( 3 )_<_O’ q
which singles out the unique '"physically relevant" weak solution of (1.1).

Both the spectral-Galerkin and pseudospectral-collocation methods for (1.1),

(1.2) are treated, and to this end we proceed as follows.

Denote by Syu(x,t) the spectral-Fourier projection of u(x,t), ﬁ

- ikx - 1 2m -ikx J

(1.3)  S,ulx,t) = ! |2 u(k,t)e %, ulk,t) = o « [ u(x,t)e dx, x
h kl <N 0

- i

and let Twu(x,t) denote the pseudospectral-Fourier projection of u(x,t),

which interpolate u(x,t) at the 2N+1 equidistant collocation points

2n
X, = vh, h = w7 0 VT 0,9« 2N, h
3
3
™
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- ikx - h 2N -ikxv
(1.4) INu(x,t) = D) u(k,t)e . u(k,t) = i Y u(xv,t)e .
[k <N v=0

These two projection operators differ by aliasing error-—that is, we have

SAAAMARS: (RIzedagaes ) v

(1.5) Iy =5y 4

where the aliasing projection Ay is given by [2]

AL

(1.6) Agux,t) = [ 5 alk + j(2n + 1), o) ]el¥™,
k<N §#0

Throughout this paper, we use

(1.7) PN = SN + a'AN

as a concise notation for the two kinds of Fourier projections: either with
a = 0, corresponding to the spectral projection, or with a =1 which corre-
sponds to the pseudospectral interpolation.

We approximate the Fourier projection of the exact solution PNu(x,t), by
an N-trigonometric polynomial, uN(x,t)

ikx

(1.8) ug(x,t) = a (et

o

which is determined by the approximate evolution equation

3 3
'ﬁ' UN(xyt) + K (P

2

(1.9) v % ul (x,0)) = ¢ g—x (0 -g—x ug (60

N P L L T, P T T T T T "2 T O R R
e 2N, AN P
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The expression on the right-hand side of (1.9) represents the spectral vanish-
ing viscosity term. Here Qy is the spectral viscosity operator which is
defined as a convolution with a symmetric viscosity kernel Qy(x),

ikx

(1.10) 0y 3= uy(x,t) = Q)% 3= uy(x,t), Q%) = QUie KX,

e

In the spectral case where a = 0, (1.9) amounts to

3 3 1 2 ) 3
3T UN(X,t) + s [SN 5 UN(X,t)] = €37 [ON(X)* % UN(X,t)],

consisting of a nonlinear system of ordinary differential equations for the
Fourier coefficients, Uk(t), which are coupled through the standard spectral
convolution treatment of the nonlinear term. The interpretation of the scheme

(1.9) in the pseudospectral case where a = 1 leads us to

3 3 9

3T uN(xv,t) + 5;[IN % ui(x,t)]lx=X = ¢ gi[QN(x)* = uN(x,t)]l , 0 < v E_ZN,
v

X=X

v
and consists in a complete statement of a standard collocation method with a
pseudospectral treatment of the nonlinear term.

In both the spectral and pseudospectral cases, the spectral viscosity
operator can be efficiently implemented in the Fourier rather than the physi-
cal space, i.e.,

3 3 9

o (0 2w (x,0)) = € [0 (0% o u(x,0)] = e

€ Ix

' % k% QCa, (e ™,
k<N

An essential ingredient of our spectral viscosity operator, Qy, is that it

P

©

-



= ::‘ .1;‘ -
B .;t;l-'

"d‘-

XX
.v:"::é‘;.x

7

-

"o

2z

o,
o

L

o
o e

LLE%

B ARA
o e
p

should operate only on the high portion of the spectrum, in order to retain

the formal spectral accuracy of the method. Hence we make

ASSUMPTION I: There exists a constant m = m(N) < %-N, such that

‘5(10 = 0, k| < m,
{0 < Q) < 1, m< |k < 2m,
l&(k) =1, 2a < |k| < N.

Then, with Qy = I - R, we can rewrite (1.9) as

(11D oG + 3= (g 5 ud (60 = & 1 - R ) & u (x,01,

where the corresponding kernel Rp(x),

ikx

(1.12) R (x) = R(k)elkx

lk% <2m

is a trigonometric polyncmial of degree < 2m, with Fourier coefficients

iy ‘i(k) =1, k] < m,
' l

0 < R(K) < 1, m < |k] < 2m.

In order to guarantee the uniform boundedness of our approximation, uy(x,t),

we shall need to control the size of this kernel; we therefore make

3% ; o N - ] L L% y y de 1 Y
I AR :": o S A R s e e L A e T O e D U S N '::":'"c:‘ 5;"9-.",::"v:"::"::‘\:'fo."-.‘?-"ﬂ AL



ASSUMPTION II: There exists a constant such that

(1.14) HRm(-)ﬂ 1 < Const.logm.

L (x)
We remark that the assumption of a logarithmic upper bound for the size of
Rm(x) is plausible, since typical applications 1involve R(k) which de-

crease monotonically to zero and (l.14) {is automatically fulfilled in such

s

<o cases; consult Appendix A. To obtain, with the help of Assumption II, the
..\‘
;j:: promised uniform bound on uN(x,t), necessitates L -bounded initial data,
S

un(x,0). For technical reasons we shall need the slightly stronger

“Ne

ASSUMPTION III: There exists a constant such that

’

L o N N
A ’;"..

HuN(X,t=0)ﬂ o < %<N [uk(t=0)' E Consto.

L (x) " |k

The spectral viscosity term on the right of (l1.11) depends on two free
parameters: the viscosity amplitude e = e(N) and the effective size of
the inviscid spectrum m = m(N). These two parameters should be chosen to en-
sure the convergence of the method. 1In [3] it has been proved that in the ab-
sence of such viscosity term, ¢ = 0, strong as well as weak convergence to
the exact entropy solution fails.

The main result of this paper asserts

3

Theorem 1.1: Consider the Fourier approximation (1.11) of either

spectral or pseudospectral type. Let the spectral viscosity in (1.12) -

(1.14) be parameterized with (e,m) as follows

L2PS. I ey - T g W W O, LA v o,
O O O N O T A O B A DTN
ALY B ! Rah , Eal W, o



(1.15) ¢ = e(m) ~ a —;——l—————- . m = m(N) ~ Const.NB, 0 < B K % .

m efR () )
m L (x)

Then uy(x,t) converges boundedly a.e. to the unique entropy solution of the

conservation law (1.1).

Let us examine for example the viscosity operator Qy = 1 - Spe Here
Rn(x) coincides with Dirichlet kernel Dm(x), where [5, Chapter II]
sin(m + l)x
Dm(x) = elkx = %;-—~————T—%—— , HDm(-)H ] ~ ij logm,
[k[<m sin 5 x L (x) =
so that Assumption IT is fulfilled and Theorem 1.1 yields
Corollary 1.2: Consider the Fourier approximation
) 3 1 2 _ 3 _ 3
(1.16) -a—E' UN(X,t) + -a—x (PN 5 UN(X,t)) = £ 'a—}? [(I Sm) ‘a—x UN(x,t)],
with
(1.17) =eg(N) ~C t N—ZB m = m(N) ~ Const NB 0 < B < 1
. £ onst. ToaN ° y NT T

Then uy(x,t) converges boundedly a.e. to the unique entropy solution of the

conservation law (1.1),

The spectral portion of this result (a = 0), was derived in [3, Theorem

4.1] under the assumption that the numerical solution wuy(x,t) remains uni-

formly bounded. The extension of Corollary 1.2 includes the pseudospectral




approximation (a = 1), and in addition, thanks to the slightly more stringent

parametrization than that of [3, Theorem 4.1], contains a proof of the previ-
ously assumed L”~bound.

In the last example the viscosity symbols 6(k) were discontinuous
at {k’ = m, It was suggested in [3] that the use of viscosity operators
Oy with smoothly varying symbols would be advantageous for the spectral vis-
cosity method in (1.9). As our second and final example we consider the

simplest viscosity operator of this type, namely

‘E}(k) =0, k] < m,
Tao = K o n <) <o,
l&(k) =1, 2m < |k| < N

This kind of spectral viscosity is intimately related to the Fejer operator

m=1
Fo =-% ) S, if we let K (x) denote the corresponding Fejer kernel [3,
k=0

Chapter 111}

1
i 2
Ikl 1kx B ) sin Vi mx _
% (1 - T’)e = ﬁ (—T"-‘T_—') ’ "Km(')" 1 = 1’
[k <m sin & x L (x)

then for Oy =1 - R, we have Rp(x) = 2Kyn(x) — Kp(x). Hence the kernel

associated with
2m-1

21 <
R =2F, -~F =_+] 8

m 2m m Kem k

is Ll—uniformly bounded,

IR ()i 20K, () + IR (e < 3,
m Ll(x) — 2m Ll(x) m Ll(x) —

e AN e e A A AR
2ot IR VA
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so that Assumption II is fulfilled and Theorem l.1 yields

Corollary 1.3: Consider the Fourier approximation

(1.18) 2— UN(x’t) + 3 (PN %

s = us(x,t))=e-—;[(1-—~-2 5. ) 2

k KUN(x’t)]’

with

(1.19) g = e(N) ~ Const.N-ZB, m = m(N) ~ Const.NB, 0 <B K< % .

Then uN(x,t) converges boundedly a.e. to the unique entropy solution of the

conservation law (1.1).

The paper is organized as follows. 1In Section 2 we derive a couple of
basic Lz—type a“priori energy estimates. In Section 3, these estimates are
used in order to study the spectral decay rate of the Fourier coefficients.
This in turn enables us, in Section 4, to obtain L’ a priori estimate on
the numerical solution. Finally, based on the a priori estimates prepared in
Sections 2, 3, and 4, Theorem 1.1 is proved in Section 5 along the lines of

(3], using compensated compactness arguments.

2. L2-TYPE A PRIORI ESTIMATES

We consider the approximate Fourier method (1.9) which we rewrite as

(2.1) & g+l 2)=-a——[(I-PN)—;-u§]+s

2 1y 3
ot N 3x ‘2 "N IxX

ax

Q. S—wu. ] =1+ I1.
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In order to prove the convergence of this method we need a couple of a priori

estimates on its solution. To this end, we multiply (2.1} by uy

(2.2)

N 3% [(1 - PN)_Z'UN] +oeuy o [QN—a-;uN] = III + 1V,

and integrate over a 2m period: the integral of the second term on the left
vanishes by periodicity, and after integration by parts for the second term on

the right we are left with

(2.3)

27 27
1 d 2 9 3 _ 8 (o o\l 2
5 EE““N<"C)"L2(X)+ £ é 75 Uy (% 0)Qq = up(x,t)dx = é uy g5l (T=Py )y ugldx.

Using (1.7) and the fact that I - Sy 1is orthogonal to our N-space, we find

that the right-hand side of (2.3) equals

27 2n ////\\\‘

2

0 lpj<y 7P

and by the aliasing relation (1.€), this does not exceed

2w 3 1 2 E a A A l |N E - - -
- a 1 a
f uN 5?[(I—pN)7 u.ldx = 1pupuqu <'7T—‘ ’Uplluq’lur‘-

N 2 > !
n | p+q+rf=2N+1 I p+q+r|=2N+1
In view of |p + q + r| = 2N + 1, at least two of the three indices [p] < N,
lql < N and ]r’ <N are greater in absolute value than g . and hence
Cy A A P R T P T R N S A A R I RN S B N A e s A AT SN S gt ity
ot .1““f‘f” RO “f?if#ﬁ ?ﬁ?%'f' IO g T N e e Tt i S

5 1 ~ 3 N ~ 1 2
f uy g [(I=Py) & uyldx = -a- é uy wx [Ay 7 uyldx = -ae Yy u ip(Ay uN)p,

¥ Wy - -;--:T

AR A T M B e N A e BE_AN.

LI PN | U T W W)
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o=

ST ex -<|q|< N

2n 3
LT N DD DR T TN

4lal 2, 2 2~ 2,12 - 5 172
< v Z lupl Z d luqI bl Z Z |l“:t:(Zt\l+1)—(p+q)| ] )

Z

N N N
5<tpln 5<lal<y S<lplan o<l <n
Consequently, since Q(p) = Q(q) =1 for !p!,lq] Z-; , the expression on
the right of (2.3) can be upper bounded by
21
- 2
(Z.Aa)j uy gx[l -P )i ;]dxs&—% IIQ ( t)ll ) sllu, (e, t) 5
o - N L7(x) L7(x)
Moreover, since 0 < 0(k) <1 we have for the second term on the left of
(2.3)
27
(2.4b) e [ L (x,00, & u(x,t)dx =
T 6 ax N N3dx N7
2" - 2 3
= ¢ kKT 0k Ju, ()17 > €0 u,, (s t)ll
fk%ﬁf\l K TN Ll

Inserting this together with (2.4a) into (2.3) we end up with

7

! 2 4al 3 -
(2.5) 5 ==ty (e, )10 + [e - tu, Cooed0 10 e, <

2 de N 200 72N 20) N 3% N L2y
Thus, as long Aas

|
SN Q%i}g Huw(-,t)il 5 > %»,
' L7 (x) -

we nhtain

R

‘\\\

\\“

0.

NS (..ﬁ.l\t"




O O T T e A T O YO O T T T O U TR T T T

(2.7) d 4y (-,t)n2 + eliQ 8 _ (-,c)u2 < 0.
dc N LZ(X) N 3x "N Lz(x)—

u (t)eikx we have

In particular, (2.7) implies that for uN(x,t) =) K

k<
our first Lz—type a“priori estimate

2 ~ 2 2
(2.8) Hu (et = lu, () |° < ES, E, = fu,(+,t=0)1 < Const.
N 260 il K = o 0o~ "N L2050y 0
'.t_.:. Hence (2.6), (2.7) and consequently (2.8) prevail for all time provided (2.6)
ey
t::' is valid at t = 0, i.e., we require that in the pseudospectral case where a
s
D!:"g = 1 we shall have
@
f.'ﬂ
»-.\:
Iod (2.9) e(N) > 8E_ N1/
.\' 0
",
" indeed, Assumption IT1 tells us that this requirement is fulfilled, at least
e
::'-: for sufficiently large N, for
o

J -28

(2.10) g > Const. N 8+E -N_-l/2

1
ol TogN 0 2B <5

Furthermore, temporal integration of (2.7) then gives us the second a“priori

1 %
?‘:’. estimate

P
i:.:. (2.11) en0, o u 1? ze | Z kzla(k)l; (t)|2dt ¢ 32 J, < Const
_ ’ ‘N 3x N2 - k -0 0 —
t m<|k|<N

0
Lloc(x’t)

= -~ ligs=-~ocs - Sl ceersaslVy — LS SPW FWEISEFWES S
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{ 3. THE DECAY RATE OF THE FOURIER COEFFICIENTS
A
:j Our Fourier approximation (2.1)
-~
L=
."
’

- ) ) | ) 1 2 3 d

. —_— —_— (= = — - _ + _— —

' .1 5t Uy T ax (T U T ax [T Py gyl [ay 5% vyl

X

""\ ) 1 2
. U i i z 2 - —
) consists of two kinds of errors. The first term, 1 = T [(1 PN) 5 uN],
i R

represents the discretization error, which 1includes spectral truncation

3 1 2 . .
:‘:: errors % [(1 SN) 5 uN] as well as additional aliasing errors
o 2
V. —a-%; [AN % u&] in the pseudospectral case. 1In this section, we borrow from
Pl

o Kreiss [1], in order to show that due to the second error term of spectral
N

LaPt]
SRS . s . . - .

:-::: vanishing viscosity, 11 = ¢ Bx [ON ax ], there is spectral decay of the
':: Fourier coefficients |uk(t)|, k] > 'Z N, and therefore, that the discretiza-
h. )
’ tion error is spectrally small.
o X )

- We begin by taking the T = S, projection of (1.9): for k > m we have
J'.\-::: .
"-&: by Assumption I, (I - S )Qy = T - Sp, and hence
A oY

.

-

Y 3 ) 1 2 3 3
2 - - = -

-2 (3.2) g2l (T8, 0 u ]+ (1-8, Do [Py 5 uy] = € 5[ (18, 05= uy], m< k <N,
I-:J
W]
b

® Multiplying by (1 - SorJun and integrating by parts over a ?2q4-period, we
'

A find that

V7
b) ..’
v
S 1 4
s 3: T (r - §2k)u‘( E 5 =

N L (x)

>

> 3.7 ,
N Zm

1 3 2 3 2
N - _ (T _ B .
0~ 5[ (1=Sy dm uy s (125, IPudx = €l(1=8, Jur u (o),
N 0 L7°(x)

L)

'-\I

thy

“f ..-_-.-'-‘.- \ TR e e gt LT Tw e A
.& \\ o ar B e 2 e e o e eV . . Tt
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The first integral on the right does not exceed

7 (S0 5% “N'(I‘Szk)PN“fzdx <
0
(3.4)
¢ L r=s. ) u (e, 0 CI(I=S. YP.u2(e, )
- 2 2k’3x N LZ(X) 2k NN Lz(x)

In order to estimate the second term of the last product, we will make use of

the following lemma whose proof is postponed to the end of this section.

Lemma 3.1: Let fN = fN(x) and gy = gN(x) be a couple of N-

trigonometric polynomials. Then, for any 0 < 2k < N we have

1(1-8, 0P (£ g O, <

L°(x) —
(3.5)
52_ [quu 9 -u(I-sk)g._ gyl o * gyl 4 -u(I—sk)g— ful ].
vk L%(x) N Lx) L“(x) U Lx)
Lemma 3.1 with fN(-) = gN(-) = uN(-,t) implies
(3.6)1(1-8., )P u?‘(-,t)ll <Ay (e, « 1 (I-S )a u, (e, )1 .
2k’ NN Lz(x) - /e N Lz(x) k'3x N Lz(x)
Equipped with (3.4), (3.6), and (2.8) we return to (3.3) to find that
1d 2 3 2
(3.7) < I(I=8, Ju (=, )N < - el (I-S,, do— u _(+,t)l +
2 dt 2k’ N Lz(x) - 2k’3x N Lz(x)
+ 2 Eget(I = S,.) g_ ROV T¢ SR (e,
vk x L°(x) L°(x)
o R T T A o D TN HPADL I Sl
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which brings us to

Theorem 3.2: For any integer s >0 there exists a constant C

S
Const(s,Eq), such that for sufficiently large N, N > 2%5:4m, we have
48,02
(3.8) 1(1 = SDu (=000, < C[(F0)S + (14 LyT(SHD TNy
> L7 (%) evN e/N

Proof: Let E, (t) abbreviates the quantity

(3.9) E (t) = 1(T = 8 du (e,t)N .
k kN 120y

In view of the inverse inequalities

3
2kE2k(t) < (1 - Szk) o uN(-,t)ll 2 < NEZk(t),
L7 (x)

it follows from (3.7) that Ek(t) satisfy

2E .« N2
B (6) < -4ek’E. () + 0 E (b) <k <N

Temporal integration yields that for any 0 < tg < t we have

2 2
yA t 2 —4ek“(t-t )
(3.11) B, (6) < =2 [ TR yar 4 e Ok (),
2k — /T k 2k 0
k =t
0

and therefore

EooN2 —4ek2(t—t0)
(3.12) E2k(t) < « max Ek(r) + e -EZk(tO).

T 2ev/kek tOSjﬁt
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The a“priori estimate (2.8) implies that

s E, (1) < max E.(t) < E
o max < Eq,
5% o<e<e X o<t O 0

,{:} and in view of (3.12) we have

‘|.‘. E.*N - 2
(3.13)9 By (1) < —o—— o B 4 & SN EL

E
T 2evkek 0

0° k > m.

ll
[}

2 e

SAAN

[4
o

If we choose t =% in (3.12) we find that

0 ~2ek%t ot
\‘: (3.14) EZk(t) {——— =+ max E (1) +e D PCON k > m,

:_:: 2evkek t(r(t
. AL

and following Kreiss [l]}, we can use this to improve our estimate (3.13).

2

Namely, for k > 2m we can use (3.13); to upper bound the terms pax Ep (1)
T

77,

::: X and EZk("E') on the right of (3.14), and obtain the improved bound

1

! 8E, +N> 2 BE. N> 2

o B (8) < (——p) + B+ (1 + ——)e =" CEL k> 2m.

:}:: " eVKek

o

'

° Now we can repeat this process, and by induction we obtain that for k > 25em

ol

:":: we have

D

i::

:’.. 85E N2 s+l 85E N2 s -s+l 2

4 (3.15) B () < (—2u ) B 4+ (14 —0 )™t ekt
“2k = 2 0 i "0

2% ) E'/-E'k Em'k

M

P

£

De

Verification of the induction step is left to the Appendix. Finally, (3.15)

lﬂ}

implies that for sufficiently large k = -21- > ZS’m, we have

%

(M LN

sl Y

d

2
-
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(1 - SN)UN(-,t)H ) = EN(t)>S
> L7(x) 3
s s
3287 «E_ s+l 328 +E,. s -(s+1) 2
E( O) 'EO + (1 + __—_9) e 4 eN t’EO,

evVN

and 3.8 follows.

Our parametrization in (1.14),(1.15) 1implies that for sufficiently

large N we have

2-28
-(s+1) 2 N 3/2 1
4 +cN"t > Const. st DN .t, 0 < 28 < y
- S Ty~ z
as well as
1 logN 1 1
—— < Const. < — 0 <y XK - 28,
VN c; -28) ~ nY K
N
and Theorem 3.2 tells us that
Corollary 3.3t For any integer s >0 there exists a constant C,
such that
i} 372,
(3.16) (I = S )u, (e, )l <c (NS4 Ny,
NN 2, - s
5 L7 (%)
Corollary 3.3 indicates the spectral decay of the Fourier coefficients
la(k)l with wavenumbers lkl Z_% N, which in turn implies a similar decay

for the discretization error, I, on the right of (3.1). For the latter we
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have

2 2

1 2 1 2 2 1 2 2
(3.17) 1(1-P )= u_ (s, t)l 2 1(I-S )= u (e,e)1°, + a“lA u (e, t
N2 °N Lz(x) N72 N L26x) N7 N Lz(x)

The Fourier coefficients of the two expressions on the right are given

respectively by

1 2 1 ~
(T - 85 uyle,t)), =5 jz: u (e)u (0, k] > N,

p+q-k=0
(Ay 3 up(+,), = Z a (ta (0), |k] <N
[— .’ —? N S -
2 N K2 |ptgk|=ane1 P @
In both cases, either lpl > g or lql > § H hence each one of these

coefficients can be upper bounded in a standard fashion to yield

12 2 2 1 2
1(I=-S, ) uy (e, +a IA u (e, t)i <
N'Z N Lz(x) N7Z"N Lz(x)_

I (ead)e[ ] |&q(t){2]-[ ) |&p(t>|2] <UECNSI(I-S u (-, 17
- 27

and by (3.17) this is the same as

(3.18) H(I—PN)% ug(-,t)ﬂ C AR VN I = SO (L0,

2 0 L7(x)

L°(x)

0ol =

Corollary 3.3 together with 3,18 show that due to the presence of the spectral
viscosity term IT on the right of (2.1), the discretization error I decays to
zero at a spectral rate independently whether the underlying solution {is

smooth or not. We state this as

PN g

5$$-af\(s,\’\$\:\:pim‘

>

A

o~

« xr v




o

_18..

sy

-
F

Corollary 3.4: For any integer s >0 there exists a constant C

K&y L LA LLPY

=~ '.r‘.-’_‘ﬁ- 220

such that for sufficiently large N we have

2 - - .
(3.19) 1 u (o, < cs-/ﬁ (N% o+ e N I

]
L7(x)
ol
)
N

1t
—
Py
—
]
©
.
|V
)
.

P
AL

We close this section with the promised

-
-w. 5 2

-
o

X Proof (of Lemma 3.1): Starting with the identity

= - +
f g = fN(I Sk)gN (1-8 )f kg + S f

NEy KN N SkBy

and subtracting from this (I - )P [Qk N ng] z (I - SZk)[Ska-Sng] z 0,

NE]
.. . .
B

we can write

l"

» .l"' 'l"l »

A

e

FRF ARV RFt . PRI

].

»
»

(I—Szk)PN(ngN) z (I—SZK)PN[fN(I—Sk)gNHI =S, ) f N° Sk

S TO%
Pd

o

»

Y

The quantity inside the right brackets is a trigonometric polynomial of degree

A
5 l..)

EXs
S

l.
>

< 2N and hence, by Parseval relation, its L2(x) norm dominates the L2(x)

norm of its Py projection, i.e.,

N 2 N 2

)
g H(r=s, P (f, g )i <apglel T <
': 2k NN 1200) L20x) =

. (3.20)

%
X i: i uf (1-8 )gw+ (1- gk)f'\l K8 .
v

L (x)

The norm on the right of (3.20) is upper bounded by

L X
LA
P2

Y
L L ]

u‘ﬁ
4 “‘

s
.’\r
¥

Iy
-

.'._‘-),\ N e N N A -.‘.t ,‘n.\-r' S At - LTS = = A .'w LR

DO G 0% 0%, c.'t N DN DN I, T AL "‘1\ 850t X “\' SO ».l'.‘l.l' \"\\ N

.;.



HfN(I—Sk)gN+(I—Sk)fN-SngH 5 i
L7(x)

(3.21)

HEH o =0 (I=S Dg -+ gl I(I=s Hfn .
Yo N0 N e N0

Finally, for hy equals either fy or gy we have

1{1=-S Yh I < Y o In |«
k'"N Z[>k =
(3.22)
p?‘lhplz]l/2 < 2—_ HCT-S, )= i

1
< | — .
- lp§>k p? lp%>k VK KTax N 200

and (3.9) follows from (3.20), (3.21), and (3.22).

4. L™ A PRIORI ESTIMATE

The classical energy method can be used to show that the solution of

(2.1) remains uniformly bounded during a small finite time. The method

reflects the fact that for sufficiently smooth initial data, say with
2

8”7 uw(x,t=0) which are Lz-bounded, the process of shock formation takes a
Ik~

finite time, during which %;~UN(X,C) remains uniformly bounded and a

couple of Sobolev norms could be a“priori estimated during that time.
For a brief initial time intervals, we can do better with regard to the

smoothness of the initial data, as told by

Lemma 4.1: Consider the Fourier approximation (1.11) - (1.14) with

inftial data uy(x,t=0) such that Assumption IIT holds, i.e.,

E
!
N
§
i
L]
:
|
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1o (ea
(4.1) y uk(t—ﬂ)‘ < Const .
e Tex
Then for t < % we have
) 1
(4.2) hu, Cey et <2 . % la, (t=0)1, t e
N L0 x) T ox k 8ConstO N

Proof: The Fourier transform of (1.9) reads

(@8

4.

Q. ~~

I

)
. ik . o (o) . : . - —ek’0(0)u .
u () + i {p+§=k u (B (€ + a 'M-EKI=ZNH u (Ou (€)] = —ek“alk)u, (t)

[a¥

t

Multiply the real (imaginary) part of this by sgn(Reuk(t)) (respectively,
sgn(Imuk(t))) and sum over all k“s: since the right-hand side is negative we

obtain after summing both parts

d ~ ) -~
=— lu (£)] < (1 + la])e2Ne lu (e)]e § lu,_ ()] ¢
dt ’k%SN k — Ip <N p K k-p -
(4.4)
° 2
< 4N % ]uk(t)‘) .
| k]
Integration in time vields
Tu Co ) < % l;k(t)l < L . % ‘;k(t=0)‘,
‘ L (x) |kl 1-4Nt e ; |uk<t=0)l kI<N
[k <N

and (4.2) follows.




To obtain L” bound for later time, we shall carefully iterate on
the LP(x) norms of uy(x,t). To this end, we multiply (2.1) by pug_l

and integrate over the 2n-period, obtaining

d p ptl x=27
L (e, )P + L u T (x, )| D =
de' N P (x) p+l N x=0
(4.5)
27 2n
- . p—-1 0 p-1_ 39 3
P é ug 5;—[(1 -P ) ]dx + po é ug € 5;-[QN % uN]dx.

By Corollary 3.4, the discretization error is negligibly small: wusing (3.19)

and the fact that (I - PN) l—uz is a trigonometric polynomial of degree

2 °N

< 2N, we have for any s >0

Chet 3 S

o J 1 2 2 ,~s, =N et
~ /ZN'-ug; [(I—PN)Z-UN(',t) U < C.N «(N “+e ).

Lo (x)"

Therefore, by Hglder inequality, the first integral on the right of (4.5) does

o not exceed

:. p.jhup_l [ (1-P oy ]dx < pe 1l i(- t) ol [(1-p )1 2(- t) ] <
o N Ix N'Z N ’ L9¢x) X NIZIN T LP(x)—
(4.7)

* < peiuy (e, ey P~ -cso(N2'3+N2e"N Yy,

L (x)

“
~ The second integral on the right of (4.5), with Oy =1 - Rp, equals
-~

¥ o 2 au,, 2 82
G p'f

. uy e%i[(I—Rm)g;uN]dx = —ep(p—l)-£ ug_z(giﬁ) dx - sp-é ug S—Y(R u )dx.
_ 0 X

I T I S S O i L A R S S iy y‘x‘-‘&'x‘x‘ P e o Y ) W ¥ Y ) >
oL,
A% ‘.ﬂ' N""- ‘. ) R f lf' ,’n i ¢ NN e n"‘u !. o A ‘:".0‘, ?‘u .l:‘m;‘!‘u “l&"“ . " .f‘.'h h“"‘.l; ...l “15 'l“'('\t' )
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The first term on the right hand side is negative for any even integer

p 22 for the second term we use Holder inequality as before, obtaining
Tq 9 2
b -1 3" p-1 3
(4.8a) ep+[ W] (R_u ddx < ephu, (+,t)] 15— (R_u)J .
N 2 \ - VS 2 n N
n ax N N P (x) ax o Lp(x)
Now, since Rmu\I = Rm(x)*uN(x,t) is a trigonometric polynomial of degree

< 2m, (consult (1.12)), we can estimate the LP(x) norm of its derivatives

as follows [5, Chapter X]

9

ué~7(R u, I < (2m)2-HRm(')*u

Uy o S (e,t)H <
ax” LY (x)

N LPx)”
(4,8b)
2
< 4mTHR () eliu, (ot .
- N LP(x)

Using (4.8a) and (4.8b) we conclude that the second integral on the right of

(4.5) is upper bounded by

2n

< -1 d 2 P

(4.9) pef uPTlez— [0, == u,ldx < 4peem R ()1 elu, (o, t)I .
n N X N 3x N —_ m Ll(x) N LP(x)

We recall that according to our parametrization (1.15), emZ-HRm(-)H 1 < a.
L (x)
Hence, equipped with (4.7) and (4.9) we return to (4.5) to find that
p-1 d
plu (e, t)! o—lu, (et <
N LP(x) 9t R LP(x)
3/2
- - 2 - .
pluy (+,e)nP ! [4aettuy (o ,e) + CS-(N2 s ente™ 'H),

LP(x) LP (%)

or, after division by the common factor of pHuN(-,t)up‘l ,

LP(x)

N A T T T PR TR S
RN IMERY
DY) fﬂﬁair‘ LSL‘QRQQ&



Y < dastug (oLt + cq-(x“'sw*e ).
tPx)™ tPxy

d
E?-HUV<

., Finallyv, we integrate in time obtaining by Gronwall”s inequalitv that for

any 0 <, <,

0

e (4.10)
Y Qa(t-tn) o_g -N ot
Ta, (et < e .[uuN,(-,t i +C (Nt ) /N e ).

N Lp(x)— ! 0 Lp(x) s

4 1

: : s / : = Ny = _
g Letting p even tends to infinity, then (4,10) with ty = to(u) RConstn-N
-~

gives us

) 2-s -Const .VN
(4.1 M eyedn o < [uuN e +C (N et + /N e )]

“ : L (x) L (x)

and together with Lemma 4.1 we conclude with the desired Le bound, namely,

Theorem 4.2: Consider the Fourier approximation (1.11)-(1.14). Then for

any s > 0 there exist constants a >0 and CS such that

(4.12)
i “UV(',t)H . ¢ eAat'[A' % I;k(t=0)‘ + Cg+7’(N_S°t + /Y e-COnSt./ﬁ)].
\ N L (x)" [N sTe

Remarks: 1. We observe that the exponential time growth in (4.12) does

2
not exceed ha where a ~ em™siR (<)l < Const.

Ll(x)
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2. The a“priori LP(x) estimate derived in (4,10) is valid for arbitrarv L--
- . . . @ .
hoead inftial data.  We note, however, that the resulting L bound in such

case is not uniform with respect to the initial time tp. That is, with arbi-

o
trarv L--bounded initial data, the solution HuN(-,t)H - may still grow
h L (x)
like 0(/N), The point made in Lemma 4.1 was that with slightly strengthened i
i
recvularity assumption on the initial data
% ]uk(t=0)! S_Consto,
e l<N
this growth is bounded for a brief time interval of length ~ % , after which
o o . -
" the spectral viscosity becomes effective and guarantees the L bound later
o

4

5
X,

On .

" A\
P

5. CONVERGENCE TO THE ENTROPY SOLUTION

We follow [3], using compensated compactness arguments to conclude that

uv(¥,t)  converges to the entropy solution of (l.1), (1.2).

ERCAS (..".

B

1{. Proof: (of Theorem 1.1). Consider the four terms on the right-hand side
= rProot

N‘--

e nf (2.1) and (2.2). Using (3.18) together with (2.11) along the lines of [3,
T

LN

::}j Lemma 3.1], we find that the term I satisfies

‘.5‘:',‘
@, -
t{fQ

M T ((1-P )l u?'(',t)]" <

- Ix N2 N -1

e H]oc(x’t)
WL (5.1)

. 1 2 1

L (I=-P)mu (o, 00, ARG Ty & ——— > 0.
: Lo (X t) T /EN)SN Neew

Also, bv the a’priori estimate (2.11) we have
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x,l)ﬂ

<CY/ENY .

(x,t)
oc

Thus, in view of (5.1) and (5.72), the terms T and [ on the right of (2.1) bhe-

Tony to the compact of H—] (X,l).
loe

Next we note that since Oyt Rm

J -9
<Ae 1Q, -— ugll + /e Iz— (R u )l
9 > 2 9 N 2

N 1. (x,t) N dx 1, (x,t) % m 1 (x,t)
loc loc loc

The first term on the right is bounded by Jgs the second one—-—heing the

derivative of a trigonometric polynomial of degree < 2m, does not exceed
Vit e ?m -IIuNH y < Const. Consequently,

1.7 (x,t)_—
l1oc

< Const.
(x t)

It}
/E'Hg;-uN

Fquipped with (5.3) we now turn to consider the right-hand side of (2.2

b AL A

the third term in (2.2),

111
1

we have by Theorem 4.2 and the estimate (5.1)

A . o e e s
L ':"‘:!" 5 'al. Wi N Y, ¢!"A".i L0 ‘.:' Xl M) .:?M:“.:?'f:'l::",:?'.’f ) '.:‘\.t 0.:“.0 2% .s‘l.li } "0.:'0. l,.' ‘ ‘! ‘H\"‘s "t,.\.o (¢ l o '
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3 1 2
R T —p ’
nIII1 S [u.\.(‘ ¥§;)? uN]n _ <
B oo ()
(5.45) o
P 1 >
Cu (T = PO ul < Hu\,(-,t)ll w M = Ps i, — 0
a T LT (x,0) ‘ L (x) T LT (x,t) Now
loc 1o
and togother with (5.3) we also have
1 2
hIIIj = R UN . (I - P\:)—E UN” 1 5
Lloc(x’t)
{(5.40)
— 1 1 2 1
<Ae I3 UV” s . —ﬂ(I—PV)f u,. i ) < Const.AEOJO- —_— 0N,
TLT (x,t) Ve ' LS (x,t) ‘ e (N)eV/N Now
loc loc
Finallv, for the fourth term in (2.2),
9 3
AU 0., — =
IV 2 eug g (O g uy)
(5.52)
3 3 k] 3
= g - o) = ! r
gy WOy 3x U] T E g OO x U TV TV
we have bv (2.8), (2.11) and the uniform bound in Theorem 4.2,
3 3
. ! z < . . ) . —_ 0‘
(5.5b) 1TV, 2 & = [UNON P UN]" -1 < RUN( ye ey - Jg : >
HD ' (x,t) 1.70x) N oo
loc
while v, = -0 2—»u ]2 + g(1-0 )a u,. 0 3y satisfies
2 N oox N N‘Fx N N Ix N
(5.5 ! 12 +
.5c) HI\ZH < E“ON % UNI ,
L (x,t) L (x,t)
loc lo
+ e R 2 " « YeNQ A
& m3x N 2 Noogx W2
L (x,t) L (x,t)
loc loc
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E‘JO + Ve «2m E0 o < Const.
Therefore, bv Murat”s lemma, [4], the inequalities (5.4), (5.5) imply that the
terms IIT and IV are also in the compact of Hzéc(x,t). In summary, we have
shown that the right hand sides of (2.1), (2.2) lie in the compact of
H_1 (x,t), and, according to Theorem 4.2, that hu, (s, is bounded
loc N ©
L (%)

(in fact, lu,l with p > 6 will do for our purpose). Hence we can

NP

LY (x,t)
apply the div-curl lemma [4] to the left-hand sides of (2.1), (2.2) and obtain
2
that (a subsequence of) uy(x,t) converges strongly in Lioc(x’t) to a weak
limit solution u(x,t).
Moreover, we claim that this limit is the entropy solution of (l.1). To

verify this claim we show that the right-hand side of (2.2), IIT + IV, tends

weaklv to a negative measure. Indeed, by (5.4) and (5.5b) the terms III and

IV; tend weakly to zero, and hence it is left to show that the term 1IVj,
v, =

tends weakly to a negative measure. To this end we proceed as in [3, Section

4] and rewrite IVZ in the form

2
(5.6) TV, = ~c[Qy 5= uyl” = € a=lgz (R u)0uu ] + e 20 (R u)equuy.
- ‘ ' ax

Denote the three terms on the right of (5.6) by 1IVop, IVsp and 1IVjy3,

respectively, Bv (2.11), 1V, tends weakly to a negative measure

(5.7a) wliim [1V,, = -e[Qy g_; uN]2] < 0.

N+oo

.

4
L
L
n
\‘
!




& )
'::'.‘ fﬁ;')“

T X 5 -ty g i
a 1‘-'-“1‘ .? .

4

PR Y

S 55N NN

- o og,op s, P
- ;Jiycxnﬂ

N0 @

~-28-~

I3 ] I3
I1f we integrate the second term, IV,,, against any C0 test function

vix,t), we find

[ YeIV,, dxdt < e f f |——~- ——-(R Uy )0 N ldxdt <
X t
oy 9
<elzCh s I=—(R M «1Q I s
— 79X L (x,t) 3% m'N 2 (x,t) NUN LZ (x,t)
loc loc loc

and since Rauy 1is a trigonometric polynomial of degree < 2m, this is less

than
(5.7b) [ [ yeIV _,dxdt < e+ 1Yy “2metu, 12 < Const. —rc —— 0,
22 -~ dx Lw (x,t) N 2 (x,t)" m(N) Noreo
loc™ ™ loc X
Finallv, for the third term
52 _ 52 -
IV23 = g 5 (RmUN)‘QN(UN_U) + € - (Rmu )'QNU =z IV231 + IV232
Ix ax
we have
a2
(5.7¢) uIV231 £ _—Z (R uN) QN(uN ud i ) E
L (x,t)
loc
< evlmielR w i elu,-ul < Const. fu, - ull >0
e e e B S
“loc 7 loc loc"?

and since € Ru 00&3 tends weakly to zero, so does the term

nUN W37,

2
(5.7d) wlim [IV232 =) 2—7 (R uy )e Q u] = 0.

N+oo

LY S --w"\-
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From (5.7a) - (5.7d) we conclude that the term IV, in (5.6)-—and therefore

that the right-hand side of (2.2), tends weakly to a negative measure. Thus,

by taking the weak limit of (2.2) we recover (l1.2) for our limit solution

ul(x,t). Consequently, the strong L2

loc limit of uN(x,t) = ulx,t) is

the unique entropy solution of (l.l1) as asserted.
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APPENDIX
A. THE L1-LOGARITHMIC BOUND OF MONOTONE VISCOSITY KERNFELS

We consider symmetric viscosity kernels of the form

Q(k)elkx + % e]kx’
2m<

0, (x) =
N k[<N

IR%SZm

with monotonically increasing Fourier coefficients. Then, the kernels which

correspond to R, =1 - Qy, are symmetric polynomials of degree < 2m

(a.1) R (x) = 2 R(k)coskx

k{<2m
whose Fourier coefficients are monotonically decreasing, compare (1.113),
(a.2) L > R(K) + > 0.

Such kernels satisfy Assumption I1 above, as told by

Lemma A.l: There exists a constant such that

(a.3) R (o) <{ Const.logm.
m 1 -
L (x)

Proof: The result follows {f we can show that Rm(x) is majorized bv

1
Const.m and Const. T;T , for then we have
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1
RGO < [ Const.medx + / Const ., T dx <

- 1 1
(26) Y g Klxler

RRRY !

s

< % Const .m + 2+<Const.log |x||x=Y

x=—
m

y _\' A

£ Const. log m.

[ Y
.
»te

ik

Since 0 < R(k) <1 we have

X
XK

o

R ()] <2 RGO < 4m;

LE

R

< 7

P ';ﬂ

furthermore, summation by parts yields

[y

% ¥ F

lstn()R ()] = | R(K)+[sin(k + )x ~ sin(k - )x]| <

s

<4+

% R+ = RGO | | sin(k + 2)x],
1<] k[ <2m-1

and since R(k) are assumed to decrease monotonically

6 1
IR _(x)] £ ————— < Const. T_T ,
m Isin(%)[ *

which completes the proof.
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N, B. THE DECAY RATE OF THE FOURIER COEFFICIENTS-REVISITED
In Section 3, we concluded that the quantities
F.k(t) E lt(I-Sk)u\,(-,t)lI R » satisfy for k > m, the recursive inequality
" L7(x)
(3.14)
1
L
L
2 5 -i
E N 2
(b.1) E, (t)(-—L— max F(T)+e2€k t.E (—t—).
2k =, /E-kz . k 2k 2
) it
In this section we complete the details for the solution of these recurrence
relations, and obtain that for k > 25.nm we have
s 2 s 2 '
B F N s5+] B E . eN“ s ~s+l 2 :
(b.2) Fo(t)y < 0 ) .E +(1+_—_2_O )e-4 ekt g
— 2 ‘—“T - N y
K e’k k 0 evVkek 0
i4
Y fee., (3.15) holds. For s = 0, (b.2) is reduced to (3.13); now assume that
\
N
:‘ (b.2) is valid for any k > 2S5.m: in particular, for k > 25+1-m we can
e

use (b.2) with k replaced by ’lZ(' s ,l}> 2%.m, and obtain that

o

L4

A

Y 8 ey snl BTN s s
e (b.3) max F,k(r) < (___:_Z_) “E, (1 + _-——2_) .e Eq

- t evkek evkek

Y <1<t |
4 2= = >
]

VJ Furthermore, we have .
o
A
W s 2 S 2

e 87FE N° s+l R7E «N“ s -s 2
¥ 0 0 =244 ekt
! (b.4) E, (%) < ) eEL+ (14 ) ee F .

3 ] Y

9. M ek 0 e/Rek 0
.-,.-
L,
L)

e U'sing (b.3) and (b.4) to upper bound the right hand side of (b.l1) we find
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VaS
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s
—2€k2t 8 EON s+1
SELR N

e/E-kz
2
2 8%E N° s -s 2
b e 2ek t'(l + _9 2) .e—2-4 ekt
edkek

The first of the four terms on the right is less than (————lL——J *E

the sum of the remaining three terms does not exceed

RS+1E -N2 s+1 -s 2

?s+1

and hence for k > 2 *m we have

85+1E0-N2 5+2 a5t e on? s
Ep (1) < [———)  -Ey + (1 +

evkek e/E-kz 0

which completes the induction proof of (b.4),
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